Trilepton signal

An important feature of this channel is that the topology of the final state is dependent by the value of the model parameter, so that it is necessary to find a selection which allow its detection for an as large as possible parameter space.

1. Neutralino+Chargino production

The associated production of neutralino and chargino occurs via quark-antiquark annihilation through a W boson (in the s-channel) or through a squark exchange (in the t and u channel). In the following figure the production cross section (for the channels with leptonic decay of charginos and neutralinos) is shown.

2. Branching Fraction

The decay mode of the couple $\chi^+_1\chi^-_2$ depends on the value of the model parameters. In different parameter space regions, the most important decay modes yielding three-lepton final states are: (In the following $\equiv \mu,e$).

- $\tan\beta \sim 3$, $m_0 \leq 120$ GeV

 $\tilde{\chi}^0_2 \rightarrow \tilde{\nu}_L\nu, \tilde{\tau}_R\tau$;

 $\tilde{\chi}^\pm_1 \rightarrow \tilde{\nu}_L, \tilde{\tau}_L\nu$
• \(\tan \beta \sim 3, \ 120 \leq m_0 \leq 160 \text{ GeV} \)

\[
\tilde{\chi}^0_2 \rightarrow Z\tilde{\chi}^0_1 \rightarrow l\bar{l}\tilde{\chi}^0_1; \\
\tilde{\chi}^\pm_1 \rightarrow W\tilde{\chi}^0_1 \rightarrow l\nu\tilde{\chi}
\]

• for \(\tan \beta \) large the decay into \(\tau \) are dominant.

\[
\tilde{\chi}^0_2 \rightarrow \tilde{\tau}_1\tau; \\
\tilde{\chi}^\pm_1 \rightarrow \tilde{\tau}_1\nu
\]

An observed excess of \(\tau \) events would be important to point out a susy signature and in particular this would give information on the value of \(\tan \beta \)

3. Background

The dominant SM background for the trilepton + \(E_T \) is due to the following processes:

\[
q\bar{q}' \rightarrow W^*Z^*, W^*\gamma^* \rightarrow l\nu l\bar{l}, l'\nu' l\bar{l}; \\
q\bar{q}' \rightarrow W^*Z^*, W^*\gamma^* \rightarrow l\nu \tau\bar{\tau}, \tau\nu l\bar{l}; \\
q\bar{q} \rightarrow Z^*Z^*, Z^*\gamma^*, \gamma^*\gamma^* \rightarrow \tau\bar{\tau} l\bar{l}; \\
q\bar{q} \rightarrow t\bar{t}
\]